Utvidet returrett til 31. januar 2025

Semantic Segmentation using Deep Learning

Om Semantic Segmentation using Deep Learning

This research addresses multifaceted environmental challenges linked to urbanization by introducing a transferable UNET model designed for precise greenery detection in high-resolution satellite imagery. The dataset, consisting of 72 images captured over Dubai by MBRSC satellites and annotated by the Roia Foundation, serves as the foundation of our study. While rooted in Dubai, the model's adaptability extends beyond regional confines, offering a versatile solution to a spectrum of global urban environmental challenges. In addition to accurate greenery detection, the UNET model provides a holistic approach to urban land cover classification.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9786207466214
  • Bindende:
  • Paperback
  • Utgitt:
  • 19. februar 2024
  • Dimensjoner:
  • 152x229x4 mm.
  • Vekt:
  • 100 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 12. desember 2024

Beskrivelse av Semantic Segmentation using Deep Learning

This research addresses multifaceted environmental challenges linked to urbanization by introducing a transferable UNET model designed for precise greenery detection in high-resolution satellite imagery. The dataset, consisting of 72 images captured over Dubai by MBRSC satellites and annotated by the Roia Foundation, serves as the foundation of our study. While rooted in Dubai, the model's adaptability extends beyond regional confines, offering a versatile solution to a spectrum of global urban environmental challenges. In addition to accurate greenery detection, the UNET model provides a holistic approach to urban land cover classification.

Brukervurderinger av Semantic Segmentation using Deep Learning



Finn lignende bøker
Boken Semantic Segmentation using Deep Learning finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.