Utvidet returrett til 31. januar 2025

Sorumlu Makine ?renmesi Rehberi

Om Sorumlu Makine ?renmesi Rehberi

Tahmin modellerini sorumlu bir yaklä¿mla nas¿l kurabiliriz? Bu, farkl¿ deneyim seviyelerindeki veri bilimciler taraf¿ndan bana s¿kl¿kla sorulan bir sorudur. Görünü¿te basit ama ayn¿ zamanda zorlay¿c¿, çünkü ele al¿nmas¿ gereken farkl¿ paydälara ait birkaç ortogonal konu ve bak¿¿ aç¿s¿ var. Model geli¿tiriciler, model e¿itiminin otomasyonuna, performans¿n¿n izlenmesine, hata ay¿klamaya ve MLOps ile ilgili di¿er konulara odaklan¿r. Tahmin modelleri kullan¿c¿lar¿ aç¿klanabilirlik, ¿effafl¿k ve güvenlikle daha fazla ilgilenirken, adalet, önyarg¿, etik ise ço¿unlukla toplumu ilgilendiren konulard¿r. Düzenleyiciler, özellikle büyük ölçekli etkileri olan model kullan¿mlar¿n¿n sonuçlar¿ ile ilgilenmektedir. Bu bak¿¿ aç¿lar¿n¿ dikkate alarak, Sorumlu Makine Ö¿renmesi (RML) ile ilgili üç temel unsura odaklan¿yoruz. Algoritmalar - Genellikle, verideki karmä¿k ili¿kileri ortaya ç¿karmak için geli¿mi¿ ve esnek makine ö¿renmesi algoritmalar¿ kullanman¿z gerekir. Ancak, nas¿l çal¿¿t¿klar¿ anlä¿lmadan kullan¿lmamal¿d¿r. Do\-la\-y¿\-s¿y\-la sorumlu modelleme hakk¿nda bir tart¿¿ma, karmä¿k modellerin nas¿l çal¿¿t¿¿¿ konusuna mutlaka de¿inmelidir. Yaz¿l¿m - Geli¿mi¿ modellerin e¿itimi, yo¿un hesaplama gerektiren bir süreçtir. Verimli e¿itime izin veren paketler, birer mühendislik harikas¿d¿r. Profesyoneller iyi araçlar kullan¿r, bu nedenle sorumlu modellemeyle ilgili bir hikaye yaz¿l¿rsa, mutlaka iyi yaz¿l¿mla ilgili bir bölüm içermelidir. Süreç - Tahmin modelleri kurmak yaln¿zca araçlarla ilgili de¿il, ayn¿ zamanda planlama, lojistik, ileti¿im, teslim tarihleri ve hedeflerle de ilgilidir. Veri ve model ke¿fi süreci tekrarl¿ bir süreçtir, her tekrarda oldu¿u gibi, giderek daha iyi modellere ulä¿r¿z. Araçlar¿ ne zaman ve nas¿l kullanacä¿n¿z¿ bilmiyorsan¿z, yaln¿zca araçlar¿ kullanabilmek yeterli olmaz. Bu nedenle sorumlu modellemeden önce modelleme süreçlerin ele al¿nmas¿ gerekiyor. Bu kitap, bahsedilen bu yönleri ayn¿ anda bir araya getiren bir içeri¿e sahiptir. ¿çeri¿i, baz¿ modern makine ö¿renmesi yöntemlerini ve çal¿¿ma mekanizmalar¿ndan olu¿maktad¿r. Yöntemler, R dilinde Rcran yaz¿lm¿¿ örnek kodlarla desteklenmi¿tir. Beta ve Bit adl¿ iki karakterin maceralar¿n¿ anlatan bir çizgi roman ile anlat¿m hikayele¿tirilmi¿tir. Bu etkile¿im, farkl¿ bir model denemek, ke¿if için bäka bir yöntem denemek, veya bäka verileri aramak gibi analistlerin s¿kl¿kla kar¿¿ kar¿¿ya kald¿klar¿, modeller nas¿l kar¿¿lät¿r¿l¿r veya nas¿l do¿rulan¿r

Vis mer
  • Språk:
  • Tyrkisk
  • ISBN:
  • 9788365291158
  • Bindende:
  • Paperback
  • Sider:
  • 54
  • Utgitt:
  • 8. april 2022
  • Dimensjoner:
  • 210x4x297 mm.
  • Vekt:
  • 237 g.
  • BLACK NOVEMBER
Leveringstid: 2-4 uker
Forventet levering: 19. desember 2024

Beskrivelse av Sorumlu Makine ?renmesi Rehberi

Tahmin modellerini sorumlu bir yaklä¿mla nas¿l kurabiliriz? Bu, farkl¿ deneyim seviyelerindeki veri bilimciler taraf¿ndan bana s¿kl¿kla sorulan bir sorudur. Görünü¿te basit ama ayn¿ zamanda zorlay¿c¿, çünkü ele al¿nmas¿ gereken farkl¿ paydälara ait birkaç ortogonal konu ve bak¿¿ aç¿s¿ var.
Model geli¿tiriciler, model e¿itiminin otomasyonuna, performans¿n¿n izlenmesine, hata ay¿klamaya ve MLOps ile ilgili di¿er konulara odaklan¿r. Tahmin modelleri kullan¿c¿lar¿ aç¿klanabilirlik, ¿effafl¿k ve güvenlikle daha fazla ilgilenirken, adalet, önyarg¿, etik ise ço¿unlukla toplumu ilgilendiren konulard¿r. Düzenleyiciler, özellikle büyük ölçekli etkileri olan model kullan¿mlar¿n¿n sonuçlar¿ ile ilgilenmektedir.
Bu bak¿¿ aç¿lar¿n¿ dikkate alarak, Sorumlu Makine Ö¿renmesi (RML) ile ilgili üç temel unsura odaklan¿yoruz.
Algoritmalar - Genellikle, verideki karmä¿k ili¿kileri ortaya ç¿karmak için geli¿mi¿ ve esnek makine ö¿renmesi algoritmalar¿ kullanman¿z gerekir. Ancak, nas¿l çal¿¿t¿klar¿ anlä¿lmadan kullan¿lmamal¿d¿r. Do\-la\-y¿\-s¿y\-la sorumlu modelleme hakk¿nda bir tart¿¿ma, karmä¿k modellerin nas¿l çal¿¿t¿¿¿ konusuna mutlaka de¿inmelidir.
Yaz¿l¿m - Geli¿mi¿ modellerin e¿itimi, yo¿un hesaplama gerektiren bir süreçtir. Verimli e¿itime izin veren paketler, birer mühendislik harikas¿d¿r. Profesyoneller iyi araçlar kullan¿r, bu nedenle sorumlu modellemeyle ilgili bir hikaye yaz¿l¿rsa, mutlaka iyi yaz¿l¿mla ilgili bir bölüm içermelidir.
Süreç - Tahmin modelleri kurmak yaln¿zca araçlarla ilgili de¿il, ayn¿ zamanda planlama, lojistik, ileti¿im, teslim tarihleri ve hedeflerle de ilgilidir. Veri ve model ke¿fi süreci tekrarl¿ bir süreçtir, her tekrarda oldu¿u gibi, giderek daha iyi modellere ulä¿r¿z. Araçlar¿ ne zaman ve nas¿l kullanacä¿n¿z¿ bilmiyorsan¿z, yaln¿zca araçlar¿ kullanabilmek yeterli olmaz. Bu nedenle sorumlu modellemeden önce modelleme süreçlerin ele al¿nmas¿ gerekiyor.
Bu kitap, bahsedilen bu yönleri ayn¿ anda bir araya getiren bir içeri¿e sahiptir. ¿çeri¿i, baz¿ modern makine ö¿renmesi yöntemlerini ve çal¿¿ma mekanizmalar¿ndan olu¿maktad¿r. Yöntemler, R dilinde Rcran yaz¿lm¿¿ örnek kodlarla desteklenmi¿tir. Beta ve Bit adl¿ iki karakterin maceralar¿n¿ anlatan bir çizgi roman ile anlat¿m hikayele¿tirilmi¿tir. Bu etkile¿im, farkl¿ bir model denemek, ke¿if için bäka bir yöntem denemek, veya bäka verileri aramak gibi analistlerin s¿kl¿kla kar¿¿ kar¿¿ya kald¿klar¿, modeller nas¿l kar¿¿lät¿r¿l¿r veya nas¿l do¿rulan¿r

Brukervurderinger av Sorumlu Makine ?renmesi Rehberi



Finn lignende bøker
Boken Sorumlu Makine ?renmesi Rehberi finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.