Utvidet returrett til 31. januar 2025

Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78

Om Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78

Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan. The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9780691081366
  • Bindende:
  • Paperback
  • Sider:
  • 204
  • Utgitt:
  • 21. desember 1973
  • Dimensjoner:
  • 229x151x15 mm.
  • Vekt:
  • 310 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 27. desember 2024
Utvidet returrett til 31. januar 2025

Beskrivelse av Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78

Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan.
The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof.

Brukervurderinger av Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78



Finn lignende bøker
Boken Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78 finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.