Norges billigste bøker

Weil's Conjecture for Function Fields

- Volume I (AMS-199)

Om Weil's Conjecture for Function Fields

A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: WeilΓÇÖs conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of WeilΓÇÖs conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting Γäô-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors. Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies WeilΓÇÖs conjecture. The proof of the product formula will appear in a sequel volume.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9780691182148
  • Bindende:
  • Paperback
  • Sider:
  • 320
  • Utgitt:
  • 19. februar 2019
  • Dimensjoner:
  • 235x156x26 mm.
  • Vekt:
  • 550 g.
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 20. januar 2025
Utvidet returrett til 31. januar 2025
  •  

    Kan ikke leveres før jul.
    Kjøp nå og skriv ut et gavebevis

Beskrivelse av Weil's Conjecture for Function Fields

A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: WeilΓÇÖs conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of WeilΓÇÖs conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting Γäô-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.
Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies WeilΓÇÖs conjecture. The proof of the product formula will appear in a sequel volume.

Brukervurderinger av Weil's Conjecture for Function Fields



Finn lignende bøker
Boken Weil's Conjecture for Function Fields finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.