Utvidet returrett til 31. januar 2024

Angular momentum transport and pattern formation in medium- and wide-gap turbulent Taylor-Couette flow

Om Angular momentum transport and pattern formation in medium- and wide-gap turbulent Taylor-Couette flow

Turbulent Taylor-Couette flow, where the fluid is confined by two coaxial and independently rotating cylinders, is experimentally investigated within this thesis for medium and wide gaps. To reveal the influence of flow patterns on the angular momentum transport, direct torque measurements, flow visualizations and particle image velocimetry are performed in two different facilities. For the largely unexplored radius ratio regime of ¿ = 0.357, the directly measured torque features a transition as a function of shear, which is connected to the capacity of the outer cylinder to emit small-scale plumes. When the cylinders rotate slightly in counter-direction, a maximum in torque occurs at ¿max = -0.123, which is induced by the formation of large-scale Taylor vortices. The contribution of these vortices to the overall momentum transport clearly exceeds the contribution of the turbulent fluctuations for ¿ = 0.5. Furthermore, the large-scale Taylor rolls are driven by small-scale plumes and feature azimuthally traveling waves for ¿ = 0.714. Accordingly, the angular momentum transport in medium and wide-gap turbulent Taylor-Couette flow is determined by the interaction of turbulence and flow patterns of different scales.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9783736970731
  • Bindende:
  • Paperback
  • Sider:
  • 172
  • Utgitt:
  • 26. august 2019
  • Dimensjoner:
  • 210x148x9 mm.
  • Vekt:
  • 213 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 28. november 2024

Beskrivelse av Angular momentum transport and pattern formation in medium- and wide-gap turbulent Taylor-Couette flow

Turbulent Taylor-Couette flow, where the fluid is confined by two coaxial and independently rotating cylinders, is experimentally investigated within this thesis for medium and wide gaps. To reveal the influence of flow patterns on the angular momentum transport, direct torque measurements, flow visualizations and particle image velocimetry are performed in two different facilities. For the largely unexplored radius ratio regime of ¿ = 0.357, the directly measured torque features a transition as a function of shear, which is connected to the capacity of the outer cylinder to emit small-scale plumes. When the cylinders rotate slightly in counter-direction, a maximum in torque occurs at ¿max = -0.123, which is induced by the formation of large-scale Taylor vortices. The contribution of these vortices to the overall momentum transport clearly exceeds the contribution of the turbulent fluctuations for ¿ = 0.5. Furthermore, the large-scale Taylor rolls are driven by small-scale plumes and feature azimuthally traveling waves for ¿ = 0.714. Accordingly, the angular momentum transport in medium and wide-gap turbulent Taylor-Couette flow is determined by the interaction of turbulence and flow patterns of different scales.

Brukervurderinger av Angular momentum transport and pattern formation in medium- and wide-gap turbulent Taylor-Couette flow



Finn lignende bøker
Boken Angular momentum transport and pattern formation in medium- and wide-gap turbulent Taylor-Couette flow finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.