Utvidet returrett til 31. januar 2025

Handbook of Composites from Renewable Materials, Biodegradable Materials

- Biodegradable Materials

Om Handbook of Composites from Renewable Materials, Biodegradable Materials

This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry. The Handbook of Composites from Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The Handbook comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Volume 5 is solely focused on 'Biodegradable Materials'. Some of the important topics include but not limited to: Rice husk and its composites; biodegradable composites based on thermoplastic starch and talc nanoparticles; recent progress in biocomposites of biodegradable polymer; microbial polyesters: production and market; biodegradable and bioabsorbable materials for osteosynthesis applications; biodegradable polymers in tissue engineering; composites based on hydroxyapatite and biodegradable polylactide; biodegradable composites; development of membranes from biobased materials and their applications; green biodegradable composites based on natural fibers; fully biodegradable all-cellulose composites; natural fiber composites with bioderivative and/or degradable polymers; synthetic biodegradable polymers for bone tissue engineering; polysaccharides as green biodegradable platforms for building up electroactive composite materials; biodegradable polymer blends and composites from seaweeds; biocomposites scaffolds derived from renewable resources for bone tissue repair; pectin-based composites; recent advances in conductive composites based on biodegradable polymers for regenerative medicine applications; biosynthesis of PHAs and their biomedical applications; biodegradable soy protein isolate/poly(vinyl alcohol) packaging films; and biodegradability of biobased polymeric materials in natural environment. AudienceThis valuable reference work will be read and consulted by researchers, engineers and students both in academia and industry who are working in the field of materials science especially polymer composites/technology. Composites from renewable materials have significant industrial applications especially in the automotive, marine, aerospace, construction, wind energy and consumer goods industries.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9781119223795
  • Bindende:
  • Hardback
  • Sider:
  • 688
  • Utgitt:
  • 31. mars 2017
  • Utgave:
  • 5
  • Dimensjoner:
  • 261x187x38 mm.
  • Vekt:
  • 1354 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 11. desember 2024

Beskrivelse av Handbook of Composites from Renewable Materials, Biodegradable Materials

This unique multidisciplinary 8-volume set focuses on the emerging issues concerning synthesis, characterization, design, manufacturing and various other aspects of composite materials from renewable materials and provides a shared platform for both researcher and industry. The Handbook of Composites from Renewable Materials comprises a set of 8 individual volumes that brings an interdisciplinary perspective to accomplish a more detailed understanding of the interplay between the synthesis, structure, characterization, processing, applications and performance of these advanced materials. The Handbook comprises 169 chapters from world renowned experts covering a multitude of natural polymers/ reinforcement/ fillers and biodegradable materials. Volume 5 is solely focused on 'Biodegradable Materials'. Some of the important topics include but not limited to: Rice husk and its composites; biodegradable composites based on thermoplastic starch and talc nanoparticles; recent progress in biocomposites of biodegradable polymer; microbial polyesters: production and market; biodegradable and bioabsorbable materials for osteosynthesis applications; biodegradable polymers in tissue engineering; composites based on hydroxyapatite and biodegradable polylactide; biodegradable composites; development of membranes from biobased materials and their applications; green biodegradable composites based on natural fibers; fully biodegradable all-cellulose composites; natural fiber composites with bioderivative and/or degradable polymers; synthetic biodegradable polymers for bone tissue engineering; polysaccharides as green biodegradable platforms for building up electroactive composite materials; biodegradable polymer blends and composites from seaweeds; biocomposites scaffolds derived from renewable resources for bone tissue repair; pectin-based composites; recent advances in conductive composites based on biodegradable polymers for regenerative medicine applications; biosynthesis of PHAs and their biomedical applications; biodegradable soy protein isolate/poly(vinyl alcohol) packaging films; and biodegradability of biobased polymeric materials in natural environment. AudienceThis valuable reference work will be read and consulted by researchers, engineers and students both in academia and industry who are working in the field of materials science especially polymer composites/technology. Composites from renewable materials have significant industrial applications especially in the automotive, marine, aerospace, construction, wind energy and consumer goods industries.

Brukervurderinger av Handbook of Composites from Renewable Materials, Biodegradable Materials



Finn lignende bøker
Boken Handbook of Composites from Renewable Materials, Biodegradable Materials finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.