Utvidet returrett til 31. januar 2025

ML-Based Cardiac Arrhythmia Diagnosis using ECG and PPG Signal Features

Om ML-Based Cardiac Arrhythmia Diagnosis using ECG and PPG Signal Features

"ML-Based Cardiac Arrhythmia Diagnosis using ECG and PPG Signal Features" by Lakshmi Devi R. is an innovative and comprehensive study on the use of machine learning algorithms for the diagnosis of cardiac arrhythmia using electrocardiogram (ECG) and photoplethysmogram (PPG) signal features. Through detailed research and analysis, Lakshmi Devi R. highlights the potential benefits of machine learning in accurately detecting various types of cardiac arrhythmias. The author also discusses the significance of using both ECG and PPG signals to improve the accuracy of the diagnosis. Whether you are a healthcare professional looking for new approaches to diagnosing cardiac arrhythmias or a researcher interested in the latest advancements in the field, "ML-Based Cardiac Arrhythmia Diagnosis using ECG and PPG Signal Features" is an essential resource. Order your copy today and discover how machine learning can play a vital role in improving the accuracy and efficiency of cardiac arrhythmia diagnosis.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9786801031627
  • Bindende:
  • Paperback
  • Sider:
  • 184
  • Utgitt:
  • 3. april 2023
  • Dimensjoner:
  • 152x11x229 mm.
  • Vekt:
  • 276 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 15. desember 2024

Beskrivelse av ML-Based Cardiac Arrhythmia Diagnosis using ECG and PPG Signal Features

"ML-Based Cardiac Arrhythmia Diagnosis using ECG and PPG Signal Features" by Lakshmi Devi R. is an innovative and comprehensive study on the use of machine learning algorithms for the diagnosis of cardiac arrhythmia using electrocardiogram (ECG) and photoplethysmogram (PPG) signal features.
Through detailed research and analysis, Lakshmi Devi R. highlights the potential benefits of machine learning in accurately detecting various types of cardiac arrhythmias. The author also discusses the significance of using both ECG and PPG signals to improve the accuracy of the diagnosis.
Whether you are a healthcare professional looking for new approaches to diagnosing cardiac arrhythmias or a researcher interested in the latest advancements in the field, "ML-Based Cardiac Arrhythmia Diagnosis using ECG and PPG Signal Features" is an essential resource.
Order your copy today and discover how machine learning can play a vital role in improving the accuracy and efficiency of cardiac arrhythmia diagnosis.

Brukervurderinger av ML-Based Cardiac Arrhythmia Diagnosis using ECG and PPG Signal Features



Finn lignende bøker
Boken ML-Based Cardiac Arrhythmia Diagnosis using ECG and PPG Signal Features finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.