Utvidet returrett til 31. januar 2025

VLSI CHIP DESIGN USING HIGH SPEED ATM SWITCH

Om VLSI CHIP DESIGN USING HIGH SPEED ATM SWITCH

This new design is known as the High Performance (HiPer) Switch Architecture. The presentation of the engineering is reproduced utilizing a C++ model. Reenactment results for a haphazardly appropriated traffic design with a 90% likelihood of cells showing up in a schedule opening produces a Cell Loss Ratio of 1.0x 10-8 with yield buffers that can hold 64 cells. The gadget is then modeled in VHDL to confirm its usefulness. At long last the design of a 8x8 switch is delivered utilizing a 0.5 ¿m CMOS VLSI cycle and reenactments of that circuit show that a pinnacle throughput of 200 Mbps per yield port can be accomplished. An ATM network must oversee traffic reasonably and give viable designation of organization assets for various applications like voice, video and information and give savvy tasks comparative with the quality of service (QOS) specified by the client. The administration of multi-application traffic requires some traffic and clog control methodologies.

Vis mer
  • Språk:
  • Engelsk
  • ISBN:
  • 9786205527054
  • Bindende:
  • Paperback
  • Sider:
  • 168
  • Utgitt:
  • 15. mai 2023
  • Dimensjoner:
  • 150x11x220 mm.
  • Vekt:
  • 268 g.
  • BLACK NOVEMBER
  Gratis frakt
Leveringstid: 2-4 uker
Forventet levering: 15. desember 2024

Beskrivelse av VLSI CHIP DESIGN USING HIGH SPEED ATM SWITCH

This new design is known as the High Performance (HiPer) Switch Architecture. The presentation of the engineering is reproduced utilizing a C++ model. Reenactment results for a haphazardly appropriated traffic design with a 90% likelihood of cells showing up in a schedule opening produces a Cell Loss Ratio of 1.0x 10-8 with yield buffers that can hold 64 cells. The gadget is then modeled in VHDL to confirm its usefulness. At long last the design of a 8x8 switch is delivered utilizing a 0.5 ¿m CMOS VLSI cycle and reenactments of that circuit show that a pinnacle throughput of 200 Mbps per yield port can be accomplished. An ATM network must oversee traffic reasonably and give viable designation of organization assets for various applications like voice, video and information and give savvy tasks comparative with the quality of service (QOS) specified by the client. The administration of multi-application traffic requires some traffic and clog control methodologies.

Brukervurderinger av VLSI CHIP DESIGN USING HIGH SPEED ATM SWITCH



Finn lignende bøker
Boken VLSI CHIP DESIGN USING HIGH SPEED ATM SWITCH finnes i følgende kategorier:

Gjør som tusenvis av andre bokelskere

Abonner på vårt nyhetsbrev og få rabatter og inspirasjon til din neste leseopplevelse.